Dose Distribution of Electrons from Gold Nanoparticles by Proton Beam Irradiation

نویسندگان

  • Jihun Kwon
  • Kenneth Sutherland
  • Takayuki Hashimoto
  • Hiroyuki Date
چکیده

Purpose: In radiation therapy, gold nanoparticles (GNPs) are regarded as a promising radiosensitizer candidate. Several studies have revealed a dose enhancement by GNPs in X-ray and even proton irradiation. However, these studies have been limited to the depth direction. The dose distribution in both depth and lateral directions is crucial to evaluate the full radio sensitizing effect. The purpose of this study is to estimate the dose distribution around a GNP in terms of ejected electrons. Methods: The Geant4 Monte Carlo simulation toolkit was used to evaluate the energy deposition of electrons produced by a GNP. A 20 nm diameter spherical GNP was located in a water box and proton beams were incident unidirectionally. The energy deposition and location of produced electrons were tallied by 5 nm width water slabs at a variety of depths behind the GNP. The radial dose distribution was obtained in each slab. Results: The largest radial dose was observed in the slab closest to the GNP. At the slabs deeper than 90 nm, the dose in the radial direction within 10 nm from the beam direction was found to be smaller than that without GNP. This is because the presence of a GNP decreases the dose behind the GNP, forming a dose shadow. The dose enhancement both in depth and lateral directions was shown in surrounding areas. The area of distribution became larger as the absorbed dose decreased. Conclusion: The dose distribution around a GNP was estimated by a simulation study. The dose enhancement was observed in both the lateral and depth directions. This study will enable us to make use of GNPs as a radiosensitizer in proton therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consider potential of gold nanoparticles with proton therapy compared with KV and MEV X-ray therapy.

Introduction: Many study shown the effectiveness dose enhancement with gold nanoparticles (GNPs), especially with low-energy x-rays. Recently, proton beam radiation therapy (PBRT) has attention as a treatment for tumors. The advantage in PBRT, which releases high dose at the controllable Bragg peak position that localized for Au target and the released dose increased in depth....

متن کامل

Studying Effects of Gold Nanoparticle on Dose Enhancement in Megavoltage Radiation

Background: Gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated as drug carriers, photothermal agents, contrast agents and radiosensitisers.Objective: The aim of this study is to understand characteristics of secondary electrons generated from interaction of gold nanoparticles GNPs with x-rays as a function of nanoparticle size and beam energy and ...

متن کامل

Monte Carlo calculations of dose distribution for the treatment of gastric cancer with proton therapy

Proton therapy is a common form of external radiation therapy based on the manipulation of Bragg peak of this beam, it can treat the tumor by delivering high levels of doses to it, while protecting surrounding healthy tissues against radiation. In this work, the dose distribution of proton and secondary particles such as neutrons, photons, electrons and positrons in gastric cancer proton therap...

متن کامل

Gold Nanoparticles in Stereotactic Radiosurgery for Cerebral Arteriovenous Malformations

Objective of the study: To explore the potential for therapeutic gain with gold nanoparticles in arteriovenous malformation radiosurgery based on their interaction with photons and protons. Study methods: Radiation dose enhancement resulting from the interaction of gold nanoparticles with irradiation ranging from kilovoltage to megavoltage photons and protons was researched in the literature. T...

متن کامل

Evaluation of Gold Nanoparticle Size Effect on Dose Enhancement Factor in Megavoltage Beam Radiotherapy Using MAGICA Polymer Gel Dosimeter

Background: Gold nanoparticles (GNPs) are among the most promising radiosensitive materials in radiotherapy. Studying the effective sensitizing factors such as nanoparticle size, concentration, surface features, radiation energy and cell type can help to optimize the effect and possible clinical application of GNPs in radiation therapy. In this study, the radiation sensitive polymer gel was use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015